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1. Introduction and Terminology . ..

A graph G is claw-free if it contains no induced subgraph isomorphic to the complete
bipartite graph K . Such graphs have been widely studied with respect to such other

*graph properties as matching W.--.umner.-13, 14] -and Las Vergnas 15]y,' perfection (cf.
Parthasarathy and Ravindra 191), vertex-packing'(cf. Minty [7] and Sbihi [121p , Hamilto-
nian cycles and related questions on traversability, (cf. Oberly and Sumner [8], Clark [1]
and Kanetkar and Rao 14])rand reconstruction, (cf. Ellingham, Pyber and Yu 121).

- A planar graph is said to be maximal planar (or a triangulation) if, given any
imbedding of G in the plane, every face boundary is a triangle. We-shall-use the abbre-
viations MAXP and CFMAXP for the properties maximal planar and claw-free maximal
planar respectively. (Recall that every maximal planar graph with at least three points is
either the complete graph K 3 or else is 3-connected and thus it follows that such a graph
has a unique imbedding in the plane.)

In Section 2 of this paper, we present a constructive characterization of the family
of CFMAXP graphs. In particular, the characterization proceeds as follows. First it is
shown that if G is a 3-connected claw-free planar graph, then maxdeg G < 6. We then
show that there are precisely 8 such graphs with maximum degree no greater than 5. If
G is CFMAXP and has maxdeg G = 6, then G must have separating triangles and we fix
our attention on these next. A special kind of separating triangle, called a separating
345-triangle, turns out to be the key to the characterization. If G is CFMAXP and has
separating triangles, but no separating 345-triangles, then G is 1 of precisely 7 graphs.
Finally, if G has a separating 345-triangle, we show that G must belong an infinite family
of graphs which can easily be described recursively.

In Section 3, we present some results on traversability in CFMAXP graphs and in
Section 4, some results on matching for this family of graphs.

Throughout this prper, we write u - v when points u and v of a graph are joined by
a line. Also if F is a face of a planar graph G, we shall write 8F for the boundary of F.

2. The Characterization

First it will be shown that every arbitrary 3-connected claw-free planar graph G has
maxdeg G < 6. (That is, the graph need not be maximal planar.)
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Theorem 2.1. If G is 3-connected claw-free and planar, then
(a) maxdeg G < 6, and
(b) if v has degree 6 in G, then v lies on at least two separating triangles.

Proof. Suppose that point v E V (G) has deg v > 7 and suppose the neighbors of v
(in clockwise order)-are Ui1,... ,U7,... ,ur, where r > 7.

First suppose all faces at v are triangles. We claim that there is an i such that
Ui - ui+2 , where the subscripts are taken modulo r. If ul Us3 or u3 -~ u5 we are done, so
suppose neither adjacency holds. Then, since there is no claw at v, we must have ul - us.
But then again, since there is no claw at v, either u3 - us or us - U7 and the Claim is
proved.

So, renumbering if necessary, we may suppose that ul - u3. Since GVu2,ur-2,iur1
is not a claw, ur- 2  Ur. But then by planarity, G[v,u 2 ,u 4,ur-1 is a claw, contrary to
hypothesis.

So we may suppose at least one of the faces F at v is not a triangle. Without loss of
generality, suppose lines vul and vu 2 lie in aF.

1. First suppose ul / u2 . Then by claw-freedom, either ul - U3 or u 2 - U3.

1.1. Suppose that u 2 7 u3 , so that ul - 3 . Then by claw-freedom, subgraph
G[u 4,... ,uT,...Utr] is a complete graph and since r > 7 it follows that G[v,u 4,us,u6,u 7 ]
is isomorphic to 15, contradicting the planarity of G via Kuratowski's Theorem.

1.2. So suppose U2 "- U3 . Then by claw-freedom, either U4 - Ul or u4 "- U 2. First,
suppose U4 - ul. Then by claw-freedom, G[v,Us,u6,UT7,...,ur] is complete and since
G is planar, once again by Kuratowski's Theorem, we have r = 7 and G[v, uu 6 , ut] is
complete. But then Gfv, UI u 2 , ura is a claw, a contradiction.

So suppose that U 4 76 U I and hence U 4 - U2. Then G[v, us,US, u 7 ,. .. ,u,] is complete
by claw-freedom, and hence G[v,u1, U2, 6 ] is a claw, again a contradiction.

2. So suppose that u I - U2 . Thus since aF contains at least 4 points, we have that
{ul,U2} is a 2-cut in G, contradicting the assumption that G is 3-connected.

This completes the proof of (a).
In order to prove (b), let us suppose that deg v = 6 and as above, let the neighbors of

v in clockwise order be ul,... ,u 6 . By claw-freedom, we may assume that either ul - U2

or u l - US3 .

1. Suppose ul - u3 .Then by claw-freedom, U4 - US and we have point v lying on 2
separating triangles (Vulu3v and vu 4U6v) as claimed.

2. So suppose that ul / Us3 and hence ul -- U2 . By symmetry, we may also suppose
that U 2 7 U 4 , U 3 L Us, U 4 76 Ui, US ? u and US 6 U 2 . But then G[v,iul,iu, us] is a claw,
contrary to hypothesis. !

We then have the following immediate corollary.

Corollary 2.2. If G is a 3-connected claw-free planar graph with no separating
triangle, then maxdeg G < 5. [

We are now prepared to find all claw-free mazimal planar graphs containing no sepa-
rating triangle.
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Figure 1
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Theorem 2.3. Let G be a CFMAXP graph with no separating triangle. Then:

(a) if maxdeg G = 2, G = K 3 ;
(b) if maxdeg G = 3, G = K 4 ;

(c) if maxdeg G = 4, G is the octahedron (cf. graph G(6) in Figure 1);
(d) and if maxdeg G = 5, then G is one of the five graphs G(7), G(8), G(9), G(10) or

G(12) shown in Figure 1.

Proof. Parts (a) and (b) are trivial.
(c) Suppose maxdeg G = 4 = deg v. Let the 4 neighbors of v be u 1 ,u 2 , us and U4 (in

a clockwise orientation about v). Since G is MAXP, ul - u2 - U3 - U4 - ul and the four
corresponding triangles are faces. Moreover, again since G is MAXP, cycle tsu 2u 3 u 4ul is
not a face boundary in G. So, without loss of generality, we may assume deg ul = 4. Let
w be the fourth neighbor of ul. Then by MAXP, w - u2 and w - U4. But now since
deg U2 = 4, we have, by MAXP, that W -- U3 and hence G is the octahedron.

(d) Finally, suppose that maxdeg G = 5 = deg v. As before, let {u1 , ... , us) be the
neighbors of v in a clockwise orientation about v. By MAXP, ul - u 2 - U3  U4 - US

uI. As before, we may assume without loss of generality that deg uI > 4.
Since G has no separating triangle, we may assume that ul 7L U3 and ul 7L u4 . So let

WI 1 {U2, Us, U 4 , us) be a fourth neighbor of u 1 . There are two cases to consider.
1. First suppose that deg sl = 4. Then by MAXPw,w~ Ut2 and us. If deg w, = 3,

then by MAXP, US - us and we get a separating triangle vU5 WlU 2 v, a contradiction. So
deg w, > 4.

1.1 Suppose deg t, = 4.
1.1.1. Suppose to1  U3 . Then, since G is 3-connected, triangle wtlu 3 u2 W is a face

and deg U2 = 4. Now us3 76 us since G contains no separating triangle. But deg w, = 4
then implies that G is not MAXP, a contradiction.

1.1.2. So suppose that w, ?6 U3 . By symmetry, we may also assume that to, - U4. So
let x be the fourth neighbor of wl, z {uI,u2,us). By MAXP, x - u2 ,us and triangles
W1 Xu 2 and wtxzu are face boundaries. Moreover, deg U2 = deg us = 5. Thus MAXP
implies that z - u 3 ,u 4 and hence deg z = 5. So triangles u 2 zu3 and uszu 4 are face
boundaries and by 3-connectedness, deg Us3 = deg U4 = 4. Thus we get graph G(8) on 8
points.

1.2. So suppose deg w, = 5.
1.2.1. Suppose w, - u3 .
Then since G has no separating triangle, triangle w 1 u 2 u 3 is a face and hence deg U2 =

4.
Now suppose that w, - U4.Then deg w, = 5 implies that triangle W 1 U5ui 4 is a face

as is triangle wus3 u 4 . So G must be the 7 point graph G(7).
So suppose that w, ?4 U 4. Let z be the fifth neighbor of tol. Since deg w, = 5 and G

is MAXP, it follows that z - us and hence deg us = 5, so triangle witusz is a face as is
triangle ?ir5 U4. But then by MAXP, it follows that z -s 3 , deg U3 = 5 and triangle zW1 u 3

is a face. Hence by 3-connectedness, G is the 8-point graph shown in Figure 2. But we
have drawn and labeled it there so that it is obvious that it is isomorphic to graph G(8)
of Figure 1.
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1.2.2. So suppose that w, ?6 u 3 (and by symmetry, that w, UL u4 as well). Let
the fourth and fifth neighbors of w, be z, and z 2 . So we may assume by MAXP that
U6 -- z - Z2 - U2. But then deg w, = 5 implies that all triangles at w, are faces.
Furthermore, we also have that deg u 2 = deg u5 = 5. Hence MAXP implies that z, - u4
and z2 -- U3. Also triangles zIu 5 u4 and Z2 U2 U3 are both faces.

Now suppose that z, - u 3. Then we must have that G is the 9 point graph G(9) of
Figure 1.

So suppose that z1 ?6 u3 and by symmetry that z2 -/ U4 . By MAXP, z, must have
a fifth neighbor a. Again by MAXP, point a ,-- z 2 and triangle azIz2 must be a face. So
deg Z2 = 5. Thus a - U3, U4. So then deg U3 = deg u4 = 5 and G is the 10 point graph
G(10) of Figure 1.

2. So suppose that deg ul = 5. By symmetry, we may also assume that deg u2 =
deg U3 = deg u4 = deg us = 5 as well. Let the remaining 2 neighbors of ul be a, and 01
in clockwise order about ul. So triangle al/liu1 is a face boundary. The fifth neighbor of
u2 cannot be a 1 , u 4 or ur1 since C contains no separating triangle. So let this fifth neighbor
be a 2 where a2  {v,ui,...,ss,a 1 ,131 }. Then we must have a 2 -/Pl,u 3. Let the fifth
neighbor of u3 be a 3 . Now a3  / 1, Us since there are no separating triangles.

2.1. First suppose a 3 = al.
Now suppose deg/61 = 4. Then by MAXP, a, - a2 . So deg a, = 5 and then

3-connectedness implies that deg u 4 = 3 and deg u6 = 4. Thus C is not MAXP, a contra-
diction.

So suppose that deg 61 = 5. Let - be the fifth neighbor of 8 1. Then MAXP implies
that -1- a2 and "I - al. But then 3-connectedness implies that deg u4 = 3 and deg U6 = 4
and once again we contradict the hypothesis that G is MAXP.

2.2. So suppose that a3 76 a. Thus a3 V {V,ul,... ,us,ai,0I,a 2 }. But then
deg U3 = 5 and MAXP implies that a 3 - a 2,U4.

2.2.1. Suppose U4 -. al. By MAXP we must have al - a 3 and hence deg al = 5.
But then again by MAXP we must have a3 i,31 and deg a3 = 5. Hence deg = 5. So
G is the graph shown in Figure 3 which is isomorphic to graph G(10).
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Figure 3

2.2.2. So suppose u4 76 a 1.
2.2.2.1. Suppose u 4 - #I. Then deg U4 = deg 1I = 5 and by 3-connectedness we have

deg u 5 = 4 and deg a, = 3. But this contradicts MAXP.
2.2.2.2. So we may assume that u 4 - alfl. So let the fifth neighbor of u4 be a 4 .

Since deg U4 = 5 and since G is MAXP it follows that a 4 - a3 ,Us5 . So deg us = 5 and
hence a 4 - aI. (At this point, we have the graph shown in Figure 4.)

Figure 4

Now let us consider the possibilities for point al.
If al - a 2 , then the degree of each is 5. But then by 3-connectedness, {a3, a 4 } does

not contain a cutset of G, and hence deg a 4 = deg a3 = 4. But this contradicts MAXP.
If a1 I a3, we get a similar contradiction.

Next suppose that al has a fifth neighbor as, where as 0 {f81, ul, us, a4}. Then since
deg aI = 5 it follows that a6 1 # 1,a 4. Then deg P, = 5 and hence a 5 - a 2 . Hence
deg a 2 = deg a 4 = 5 and since G is MAXP, it follows that a 3 - a5 . So G must be the
icosahedron labeled G(12) in Figure 1.

So finally suppose that deg a, = 4. By symmetry, we may also suppose that deg 01 =

4. But then we contradict the fact that G is MAXP and the proof of the theorem is
complete. I

We now fix our attention on CFMAXP graphs which contain separating triangles.
The concepts of a 345-triangle and a 345-nest will prove central to our considerations.

Any triangle (not necessarily a face boundary) in a CFMAXP graph G naturally separates
the plane into two open regions R, and R2 where, without loss of generality, we will call
R, the interior of the triangle. Now let T3 be such a triangle in CFMAXP graph C where
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V(Ts) = {a,a3,)a} and ai sends i lines into region R2. We will call such a triangle T3 an
(interior) 345-triangle.

Now suppose j > 0 points of G lie interior to 345-triangle T3. If j = 0 then T3 is a
face boundary. In this case, denote the triangle, together with the half-lines in region R 2

incident with the three points of T3, by No.
Next, suppose j = 1. Suppose a 4 is the only point of G interior to T3 . Now since G

is 3-connected, point a4 is adjacent with all three points al,a 2 and a3 . So by Theorem
2.1, deg a3 = 6 and triangles a3a 4a, and a 3a 4a 2 are face boundaries. Since there are no
other points interior to T'3, triangle a 4ala 2 is also a face boundary. Denote this 4 point
configuration including the 5 half-lines emanating from al,a 2 and a3 into the exterior
region R 2 by N1 .

If j = 2, and a4 and a5 are the two interior points, then without loss of generality, we
may assume that a4 is adjacent to a,, a 2 and a 3 and by Theorem 2.1, deg a3 = 6. Hence
triangles a3a4al and a3a 4a2 are face boundaries. So as is interior to triangle ala 2a4 and
by 3-connectedness, as - a,, a2 and a4. Hence all three triangles at a6 are face boundaries.
Denote the 5-point configuration (together with the 5 half-lines into region R 2) by N2 .

Suppose j = 3 and that points a4 , a5 and a6 are interior to T3 . Then without loss of
generality, we may assume that a 4 - a1 ,a 2,a 3, a6 - a1 ,a 2 and a 4 , that as is interior to
triangle ala4 as and that a6 - a,, a4 and a5 . So we have 7 triangular faces interior to T3 .
Denote the resulting 6 point configuration (together with the half-lines into R 2) by N3 .

In Figure 5, we display configurations No, N 1 , N2 and N3 . (It is important to realize
that the triangle a 4ara 6 is also a 345-triangle.)

Figure 5
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Now we continue to define Ni's, j 4, inductively as follows. Suppose that points
al,a 2 ,... ,a, 8 < j, have been labeled so that a. is adjacent to a8 -,as- 2 and as-3.
Then there remain j - s > 0 points interior to 345-triangle T. = aja.-la.- 2 . Since
deg a.- 2  _ 6 and T. is a separating triangle, it follows that a,- 2 is adjacent to exactly one
point interior to T. Label this point a.+,. Then deg a.- 2 = 6 and by MAXP we must
have a,,+, - a°,a,- and triangles a.+la°-la-2 and a+Ia.a. -2 must be face boundaries.

In this way, a unique labeling of all i points interior to T 3 is obtained and the struc-
ture of G interior to T3 is completely determined. Call the subgraph of G induced by
{a 1 ,...,aj together with the half-lines from points al,a 2 and as into region R 2 the (in-
terior) 345-nest N, based at al,a 2 and a3 .

Now suppose interior 345-nest Nj forms part of a CFMAXP graph G. Let the unique
exterior neighbor of a, be bl. Since line alb, is the only line from a, to the exterior region
R 2, it must be the case that b, - a2 ,a 3 and triangles blala2 and blala3 must be face
boundaries. Let b2 be the second neighbor of a2 in R 2. Then since a2b, and a 2b2 are
the only two lines from a 2 into R2, triangles a 2bxb 2 and a 2b2 a3 must be face boundaries.
Finally, let b3 be the third point in R 2 adjacent to a3 . Then b3 - bl,b 2 and triangles
b3 61a3 and b3 b2 a 3 are also face boundaries. (See Figure 6.)

Figure 6

Moreover, we now see that the three points of triangle b1b2 b3 send 3, 2 and 1 lines
respectively into region RI. Thus we may call triangle bib 2 b3 = T3 an (exterior) 945-
triangle. Clearly, if k > 0 points of G lie in R 2 , but exterior to T3, we can repeat our
argument about the interior of triangle T3 to conclude that the k points of G exterior to
T 3 can be labeled b4,b 5,... ,bk+3 so that b 4 - bl,b 2 and b3, b5 - bl,b 2 and b4 , bs - bl,b4
and b5 and for k > 4, bk+3 - bk+2,bk+1 and bk. We call the resulting configuration
(together with the 6 half-lines from bl,b 2 and b3 into the interior of triangle blb 2b3 = T3)
an exterior nest N'. Finally, we call graph G the amalgamation of nests N. and N'
at triangle T 3 = ala 2a3 and write G as N- 0 NI.
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We have thus proved the first half of the following theorem.

Theorem 2.4. Given any CFMAXP graph G with a separating (interior) 345-triangle
T3 = ala2a3 , G can be expressed as the amalgamation of 2 nests Ni 0 Nk' at T3 .

Conversely, the amalgamation of 2 nests Nj E N' at a 345-triangle T3 , j >: 1, k > 0
results in a CFMAXP graph.

Proof. To prove the second half of this theorem, we need only check that Ni E N'k
is claw-free. Moreover, by MAXP, we need only check for claws at points of degree 6.
Finally, by symmetry, it suffices to check only those points of degree 6 in the nest Nj and
therefore in the graph Gi = Nj E No, for i > 1.

It is easy to check by hand that Go, GI, G 2 and G 3 have no claws. (They have 0, 1,2
and 3 points of degree 6 respectively.)

Now suppose G,. has no claws for 3 < r < i and consider graph G,+,. Graph G,+ 1
is obtained from Gr by inserting one new point a,+ 4 inside triangle ar+3 ar+2a,.+l in G,.
and joining a,+ 4 to each of these 3 points. The only newly formed point of degree 6 is
a,,+, which is adjacent to a,,arl- and ar-2 by definition of G,- 2 ,G,.- and Gr, as well
as to a,+ 2,a,+ 3 and a,+ 4 . Now in G,.+i, there are 6 triangular faces at point ar+ 4. In
addition, ar+3 - a,+ 2 by definition of G, and ar- 1 - a,-2 by definition of G,- 3. It thus
follows that there are no claws at a,.+,.

Thus G,+i, and hence by induction, all Gj's are claw-free. 1

Corollary 2.5. Let G be CFMAXP with a separating 345-triangle. Then G contains
precisely 2 points of degree 3.

Proof. From the preceding theorem we can write G = Nj D N' and each of the 2
nests contains exactly 1 point of degree 3. 1

Now with the idea of separating 345-triangles in mind, we can proceed with our
characterization of CFMAXP graphs.

Theorem 2.0. Suppose graph G is CFMAXP with a separating triangle, but no
separating 345-triangle. Then G must be one of the 7 graphs displayed in Figure 7.

Proof. Let T = abc be a separating triangle. From Theorem 2.1 we know that
maxdeg G < 6. Moreover, by 3-connectedness, we know that each of the points a, b and
c sends at least one line interior to T and at least one line exterior to T. We proceed to
check all possibilities. For x = a, b and c, let us denote by m.,, and n,, the number of lines
from x into the interior of T and into the exterior of T respectively.

1. m = Mb= M 1-.
1.1. Suppose n. = = n, = 1. There must be a neighbor ul of both a and b in the

interior of T such that triangle abul is a face. Then c - ul too and all triangles at ul
must be face boundaries. Similarly in the exterior of T. Thus G must be isomorphic to
G(5) in Figure 7.

1.2. Suppose na = 2 and nb = n, = 1. Let the exterior neighbors of a be ul
and U2 . Then deg a = 5 and by MAXP, ul - U2 - b and ui - c. So all triangles
au1u 2,au 2b,abv,avc,acu1 must be face boundaries. Since G is MAXP, there must be a
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point Us3 exterior to the quadrilateral bcuIu 2. But then {uI,u 2} must contain a cut in G,
contrary to 3-connectedness.

1.3. Suppose na = 3 and nb nc 1. Let the exterior neighbors of a be Ul,U2 and
u3 . Then deg a = 6, so c - Ul U2 - u3 "- b and we must have 6 triangular faces at
a. Since there is no claw at a, ul - U3 . Also since deg b = 4, triangle bve must be a
face. But then since quadrilateral bcu u3 is not a face, {Ul,US} must contain a cut in G,
contradicting 3-connectedness.

1.4. Suppose n,, =nb = 2 and ne = 1. Again let ul and U2 be the exterior neighbors
of a. Again we must have c - ul - u2 - b and 5 triangular faces at point a. Also, since
deg c = 4, triangle cvb is also a face.

1.4.1. Suppose the second exterior neighbor of b is ul. Then triangle buzu 2 must be
a face as must triangle bcul. so we obtain graph G(6a) shown in Figure 7.

1.4.2. So suppose the second exterior neighbor of b is point U3 , U3 0 ul. Then
deg b = 5 and by MAXP we have u 2 - U3 and u3 - c. But this contradicts the assumption
that n, = 1.

1.5. Suppose n, = 3, nb = 2 and n, = 1. Let the remaining three exterior neighbors of
a be u1 , U2 and U3 labeled so that the clockwise order of all 5 neighbors of a is b, c, u I, u 2 , u3 .
Then since deg b = 6, we must have c - ul - U 2 - u3 - b. Since there is no claw at a,
points u I and u 3 must be adjacent. So there are 6 triangular faces at point a and since
deg c = 4, it follows that triangle cvb is also a face. Since G is MAXP, it follows that
uI - b and hence triangle uIbC is a face. Furthermore, deg b = 5 implies that there are no
more points outside triangle buIU3; i.e., triangle bulu3 is also a face boundary.

Now if there are any points exterior to triangle ulu2us, then triangle UtU2U 3 is a
separating 345-triangle, contrary to assumption. So triangle UIU2U3 is a face boundary
as well. So graph G has 7 points, but contains a separating 345-triangle, namely ulu 3 a,
contrary to assumption.

1.6. Suppose na =nb = 3 and n, = 1.
So c U I U2 - 3 - b and we have 6 triangular faces at a. Also, since there is no

claw at a, we have ul - u3 . Moreover, b ~- ul and triangle bcul is a face, since deg c = 4
and G is MAXP. Let U4 be the sixth neighbor of b. Then u4 is in the interior of triangle

usu3 b. Since deg b = 6, we have U4 "- U3, Ul and six triangular faces at point b. But then
G[u1,C, U2,u 41 is a claw, contrary to hypothesis.

1.7. Suppose na =nb = n, = 2.
Let ul and u 2 be the two exterior neighbors of a. Then c - u-- iU2 . b and there

are 5 triangular faces at a. Since G is planar, there exists a point u3 exterior to the
quadrilateral bcuIU2 such that. either b or c is adjacent to U3 . By symmetry, without loss
of generality, we may suppose that b - U3. Since deg b = 5, c -t 3 - U2 and there must
be 5 triangular faces at b. Since deg c = 5, ul - U3 and triangle uIcu3 is a face boundary.

1.7.1. Suppose dog u3 = 4.
Then triangle Ulu 2U3 is a face boundary and G must be the 7 point graph G(7a).
1.7.2. Suppose deg U3 = 5.
Then let U4 be the fifth neighbor of U3 . Since deg u4 = 5 it follows that u4 -- U1,U2

and there are 5 triangular faces at U3 .
1.7.2.1. Suppose deg U4 = 3.
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Then G must be the 8 point graph G(8a).
1.7.2.2. Suppose deg u4 = 4.
Let ur be the fourth neighbor of U4 . Then, since deg u 4 = 4, it follows that us -

u 1 ,u 2 and that there are 4 triangular faces at u4 . But then Gui,ai,tts,tus is a claw, a
contradiction.

1.7.2.3. Suppose deg u4 = 5.
Let the 2 remaining neighbors of u4 be US and us. Since deg u4 = 5, we may suppose

that US - u1 , u6, U6 ' U 2 and that there are 5 triangular faces at U4. Moreover, since G is
MAXP, there exists a point w in the exterior of quadrilateral Ulu 2 USU6. But then deg ul =

deg u2 = 6 implies that {u 5 ,u6) contains a cutset of G, contradicting 3-connectedness.
1.7.2.4. Finally, suppose deg u4 = 6.
Let u6,u 6 ,u 7 be the 3 remaining neighbors of U4. Then we may suppose that u-

US - u6  U7 - u 2 and there are 6 triangular faces at U4 . Since there is no claw at
u4 , points u5 and u7 are adjacent. But then since {u6,u 7} is not a cutset and since
deg ul = deg u 2 = 6, quadrilateral uIu 2u 7ur must be a face boundary, contrary to the
MAXP hypothesis.

1.7.3. So we may suppose deg U3 = 6.
Let w4 and w5 be the remaining 2 neighbors of u3. Then we may suppose that

W4 - U l,W5, WS - U2 and that there are 6 triangular faces at U3. Since there is no claw
at u3 , it follows that wS -- ul. So deg ul = 6 and Lhere are 6 triangular faces at point ul.
But then G[u 3 ,c, u 2 , w 4] is a claw at u3 , a contradiction.

1.8. Suppose na = 3 and nb = n, = 2.
As before, since deg a = 6, it follows that c - u - U2 - u3 - b and there are 6

triangular faces at a. Moreover, ul - u3 since there is no claw at a.
1.8.1. Suppose b - u1 .
Since deg b = 5, triangle bulu 3 must be a face boundary. Suppose deg ul = 5. Then

triangle u3uia is a separating 345-triangle, contrary to hypothesis. So deg ul = 6. Let u4
be the sixth neighbor of ul. If u4 is interior to triangle u1 u3 u 2 , triangle uIu 3 a is again
a separating 345-triangle. So U4 is exterior to triangle u1bc and hence triangle UIU2U3

is a face boundary. On the other hand, deg uI = 6 implies that u4 -~ b,c. But then
Gib,V,u 3 ,u4] is a claw, a contradiction.

1.8.2. So we may suppose that b and uI are not adjacent.
By symmetry, we may also suppose that c and u3 are not adjacent as well. Let w be

the fifth neighbor of b. Since ma = mb = m, = 1, point w must lie outside quadrilateral
bcuIu,. But then deg b = 5 implies that w ~- c, u3 , uI and that there are 5 triangular faces

at b and at e.
1.8.2.1. Suppose deg u1 = 5.
Then triangles uIu 2u3 and uIu3 w must be face boundaries and G must be the 8 point

graph G(8b).
1.8.2.2. So suppose deg uI = 6.
Let x be the sixth neighbor of u 1. If x is interior to triangle u I u2u3 , then G[v 1, x, a, w)

is a claw, while if x is exterior to triangle UIU2U3, then Gjuu,X, U2 ,c] is a claw.
1.9. Suppose na = nb = 3 and n, = 2. Once again, let u1 ,us2 and U3 be the 3

neighbors of a exterior to triangle abc (where we shall assume that u1 ,u 2 ,u3 ,b and c are

I



in clockwise order about point a). Then c - u I - u2 - U3 - b and there are 6 triangular
faces at a. Moreover, since there is no claw at a, points ul and Us3 must be adjacent.

1.9.1. Suppose b -. ul.
If w is exterior to triangle u1 bc, then G[b,w,v,Us] is a claw at b. So w is interior

to triangle uIutb. So deg b = 6 and by MAXP it follows that w - U3 and there are 6
triangular faces at b. But this contradicts the assumption that nc = 2.

1.9.2. So suppose b 9L ul (and by symmetry, that c -/ U2).

So let w, and w2 be the two neighbors of b outside quadrilateral bculus3 . Since
deg b = 6, by MAXP we may assume that w, - c and w2 - u3 . Moreover, since there are
6 triangular faces at b, it must also be the case that w1 - w2 and triangle bwIw 2 is one of
these faces. Since there is no claw at b, points w, and u3 are adjacent. So deg u 3 = 6 and
therefore, triangles uIu 2u 3 and u3 wIW2 are also face boundaries. Finally, also by MAXP,
it must be that ul - w, and the triangle u1 U 3 w1 must be the boundary of the infinite face
at u3 .

Now if deg ul = 5, then triangle ulwic is a face boundary and G is the 9 point
graph G(9a). So suppose that deg ul = 6. Let the sixth neighbor of Ul be w3 . Then w3

must lie in the interior of triangle ulcwl. But then by MAXP, w3 - c, contradicting the
assumption that nc = 2.

1.10. Suppose na =nb = n, = 3.
Again, let the six neighbors of a, in a clockwise orientation, be b, v, c, u 1 , U2 and u3 .

As before, b - ul U2 -L3 -u b, there are six triangular faces at point a and since there
is no claw at a, points ul and U3 are adjacent.

1.10.1. Suppose b - ul.
Let wI be the sixth neighbor of point b. If wI lies in the exterior of triangle uIbc, then

G[b, tv 1, v, u3] is a claw. So wI must lie in the interior of triangle u1u 3 b. Since deg b = 6
and by MAXP we have w, - U 3, w1 - ul and triangles w1bul and wIu 3 u1 must be face
boundaries. But then G[uj,u 2 ,wi,c] is a claw at ul.

1.10.2. So suppose b -/ ul (and by symmetry, C 4 us3 ).
Let w, and w2 be the remaining 2 neighbors of b so that in a clockwise order, the 6

neighbors of b are a, u3, w 2, w 1, c and v. Then c - w I- W2 - U3 and there are 6 triangular
faces at b. Since there is no claw at b, w, - u.3 . Also since deg U3 = 6, it follows that
triangle u 3w2 w 1 is a face boundary, ul - w, and triangle UIU 3 W is a face boundary, and
finally, that triangle uIu 2u3 is a face boundary.

Now let W3 be the sixth neighbor of c. Then W3 is interior to triangle ulcwl. Also
deg c = 6 implies that w3 - ul,w1 , that there are 6 triangular faces at c and hence also
at ul. So G must be the 10 point graph G(10a). This completes Case 1.

2. Suppose m. = 2 and mb = nc = 1.
Let the interior neighbors of a be u1,u 2 . Then we may suppose that c u u 2 - b

and triangles acu i, au I u 2 and au 2 b must be face boundaries. However, since {u i, u 2} does
not contain a cutset of G, it follows that quadrilateral bcuIu 2 is a face of G. But this
contradicts the hypothesis that G is MAXP.

3. Suppose m. = 3 and Mb = =n- 1.
Arguing in a manner similar to that in Case 2, it is easily seen that the interior face

which contains line bc in its boundary cannot be a triangle. So once again, MAXP is
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contradicted.
4. Suppose M. =mb = 2 and m, = 1.
Let ul and u2 be the 2 interior neighbors of a so that c - ul - U2 - b and triangles

acul,auIu2 and au2b must be face boundaries. Also since m, = 1, it follows that b - ul
and triangle u1 bc is a face boundary.

4.1. Suppose n?- = 1 and nb = nc = 2.
But then triangle uIab must be a separating 345-triangle which is a contradiction.
4.2. Suppose na = 1 , nb = 2 and n. = 3.
Then triangle abc is a separating 345-triangle.
4.3. Suppose na = nb = 2 and n, = 1.
Let w1 , w2 be the 2 exterior neighbors of a. Since deg a = 6 and G is MAXP, it follows

that b - W2 - w1 - c and there are 6 triangular faces at a. Points b and w, are adjacent
since deg c = 4. But then Gib, w2 ,u 2,c] is a claw at b.

4.4. Suppose n. nb = nc = 2.
Let w, and w 2 be as in Case 4.3. Again we have that c,- w, - w2 - band G has

6 triangular faces at a. Since there is no claw at b, points c and w2 must be adjacent.
Moreover, since deg c = 5, triangles cwIw 2 and bcw 2 must be face boundaries. Hence we
obtain a 7 point graph in which triangle w2ca is a separating 345-triangle.

4.5. Suppose n. = nb = 2 and nc = 3.
Again let w, and w 2 be as in Case 4.3. As before, c -w, - w2 - b and we have 6

triangular faces at a.
4.5.1. Suppose b - wl.
Then deg b = 6 implies that there are 6 triangular faces at b. Hence {wl, c) must

contain a cutset of G contradicting 3-connectedness.
4.5.2. So suppose b 76 w 1 .
Let W3 be the second exterior neighbor of b. Since deg b = 6, we must have c - w3 and

W2 - w 3 .Also, since there is no claw at b, it follows that c - w2 . But then Gc, ui,w1,w3]
is a claw at c.

It is straightforward to see that, due to symmetry, there remains only one additional
case to treat.

5. Suppose Ma =mb =M= n a = 2.
Let ul and u2 be the 2 internal neighbors of a. Since deg a = 6 by MAXP we have

that c - ul - U2 - b and triangles acul,auIu2 and au2 b are face boundaries.
Suppose b - ul. Then triangle buic is a face boundary and hence m, = 1, contrary

to assumption. So b 7L ul. By symmetry we may also assume that c 7 u2 as well. So let
u3 be the second interior neighbor of b. Since Mb = 2, we have U2 - u3 - c and hence
both triangles bu2 u3 and bu 3 c are face boundaries. Moreover, since mc = 2, it follows that
U 1 - U3 and that triangle cuIu 3 is a face boundary as well.

Now let w, and w2 be the 2 exterior neighbors of a. Since deg a = 6 we may assume
that c - w1  w2 -- b and that there are 6 triangular faces at a. Since there is no claw at
a, points w, and b must be adjacent. But then G(a,w 2 ,u 2 ,c] is a claw, contradicting the
hypothesis and completing the proof of the theorem. |
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Figure 7
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3. Traversability in CFMAXP Graphs

Historically, the first theorem about Hamilton cycles in MAXP graphs seems to be
the following classical result due to Whitney [15].

Theorem 3.1. If G is MAXP with no separating triangle, then G has a Hamilton
cycle. I

As is customary, let us denote the set of all points adjacent to a point v by N(v) and
call the induced subgraph GiN(v)] the neighborhood graph of v in G. Graph G is said
to be locally n-connected if for all v E V(G), G[N(v)] is n-connected.

In order to present some more recent results on traversability in MAXP graphs, we
shall need the following easy lemma relating MAXP and local n-connectivity.

Lemma 3.2. Let G be a connected planar graph with IV(G)I > 4. Then G is MAXP
if and only if G is locally 2-connected.

Proof. If G is MAXP and v E V(G), then G[N(v)] is a cycle and hence 2-connected.
To prove the converse, let us suppose that G is locally 2-connected, but has a face

F =U 1 ... Uk of size k > 4. Consider N(ul). Since G is 3-connected, we know that
N(u1) contains U2, Uk and at least one other point. If u1 - ui, for some j, 2 < j < k, then
{ul,ui} is a 2-cut in G contradicting 3-connectedness. So N(ul)n{ui,... ,Uk} = {U2,Uk}.

Let v be a third neighbor of ul, v 0 {u2,uk}, and let G[N(v)] be denoted by G.
Since G, is 2-connected, there is a cycle Z through points U2 and uk where Z C Gv and
hence Z contains only 2 points of the boundary of face F, namely U2 and uk. Now cycle
Z can be thought of as the union of two openly disjoint paths P U P2 where each path Pi
joins U2 to uk, but V(P 1 ) n V(P 2 ) = {U2,Uk}.

Suppose each Pi contains at least 3 points. Then PI U P 2 U {iUU2,UkUl} U (8F - ul)
is a homeomorph of tue complete bipartite graph K 2,4 and since F is a face, relabeling P
and P2 if necessary, we may suppose, without loss of generality, that cycle P2 U (8F - ul)
separates any point on P1 - U2 - Uk from ul. But this contradicts the fact that v is a
neighbor of ul. So P - U2 - Uk = 0, that is, P is just the single line u2uk. But then
{u2,UkJ is a 2-cut in G separating ul from U3 contradicting the 3-connectedness of G. I

A graph G is panconnected if for each pair of distinct points u and v in G and
for every integer m, d(u,v) S m < IV(G)I - 1, there is a path joining u and v of length
m. A graph is Hamiltonian connected if each pair of distinct points is joined by a
spanning (i.e., Hamiltonian) path. A graph is line-Hamiltonian if each line lies on a
Hamilton cycle. A graph G is point-pancyclic if for all points v E V(G) and all integers
m, 3 < m < IV (G)I, there is a cycle of length m containing point v.

It was pointed out by Clark [1] that panconnected =: Hamiltonian connected =
line-Hamiltonian =: Hamiltonian and panconnected = point-pancyclic =t Hamiltonian.

The following result is due to Kanetkar and Rao (Theorem 4 of 141).

Theorem 3.3. If G is connected, locally 2-connected and claw-free, then G is pan-
connected.
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Using this result, together with the observations of Clark, our next result is immediate.

Corollary 3.4. If G is CFMAXP, then G is panconnected, Hamiltonian-connected,
line-Hamiltonian, point-pancyclic and Hamiltonian. |

4. Matching in CFMAXP Graphs

A graph G on p points is bicritical if G - u - v has a perfect matching for all pairs of
distinct points u and v in G. Such graphs play an important role in a canonical theory of
the decomposition of graphs in terms of their maximal (or perfect) matchings. (Cf. LovAsz
and Plummer [6].)

Another concept closely related to bicriticality is that of n-extendability. (The concept
was introduced for graphs in general in [10] and later studied in the special case of planar
graphs in [11] and [31.) Let p and n be positive integers and suppose n < (p- 2 )/2. A graph
G is said to be n-extendable if G has a matching of size n and every matching of size n
extends to (i.e., is a subset of) a perfect matching. If G is not bipartite, then the following
two implications hold. G is 2-extendable #- G is bicritical = G is 1-extendable. The
first implication follows from Theorem 4.2 of [10] and the second implication is immediate
from the definition of bicritical.

Graphs which are CFMAXP can be categorized nicely with respect to the concepts
of 2-extendability and bicriticality. To wit, we have the following result.

Theorem 4.1. If G is CFMAXP and IV(G) I 4 and even, then:
(a) G is bicritical and
(b) G either is not 2-extendable, or else is the icosahedron (which is 2-extendable).

Proof. Let u and v be any 2 points in G. Then by Corollary 3.4 there is a Hamiltonian
path P joining u and v in G. Denote this path by P = (u = u1 )u 2 ... U2k-(u2k = v).
Since P is of odd length, so is subpath P' = P - u - v = U 2 ... U-. But then M =

{u 2u3 ,u 4 u, ..., U2k-2u2k-1} is a perfect matching for G-u- v and hence G is bicritical.
On the other hand, it is easy to see that no CFMAXP graph, other than the icosa-

hedron, can be 2-extendable. Let G be CFMAXP. If G has no separating 345-triangle,
appealing to Theorems 2.3 and 2.6, we see that there are only 15 graphs to check and it is
easy to see that the only one of these which is 2-extendable is the icosahedron.

Now suppose that G contains a separating 345-triangle T = abc. Then it contains
such a triangle with exactly 1 point on its interior. Let this interior point be d. Now let
e be a fifth point of G where e is exterior to the triangle T = abc, but adjacent to one of
the points a, b or c. Say, without loss of generality, that e is adjacent to a. Then clearly
the 2 lines bc and ae do not extend to a perfect matching. I
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